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The process of non-steady-state transverse diffusion of a passive addi- 
five in a granular layer described by a cellular model is investigated. 
The general results obtained in [1] are applied to an analysis of con- 
crete transport processes of matter and heat in a granular layer. The 
following four cell models are treated: (1) ideal mixing cells without 
stagnation zones; (2) ideal mixing cells with stagnation zones; (3)ideal 
mixing cells with diffusive stagnation zones; (4) ideal mixing cells 
with diffusive stagnation zones having a finite exchange rate between 
the free volume and the stagnation zone. The conditions of applica- 
bility for each of the above models are found. The time to establish 
a normal distribution in the transverse diffusion process is determined 
for all the models. This quantity is then connected with the physical 
characteristics o f  transport processes of matter in a layer of non- 
porous and porous partfcles, the transport of heat in a granular layer, 
and the transport of matter in a layer of part, ties which adsorb an 
additive. 

1. G E N E R A L  R E S U L T S  

T h e  p r o c e s s  of  t r a n s v e r s e  d i f f u s i o n  of  a p a s s i v e  

a d d i t i v e  in  a g r a n u l a r  l a y e r  w a s  i n v e s t i g a t e d  in  [1]. In  

a c c o r d a n c e  w i t h  the  m o d e l  a d o p t e d  t h e r e  t h e  l a y e r  i s  

t r e a t e d  a s  an  a g g r e g a t e  of  c e l l s  j o i n e d  b y  c h a n n e l s .  
T h e  f l u i d  o r  g a s  c r o s s i n g  the  l a y e r  f l o w s  ou t  of  t h e  

c e l l s  of  e a c h  h o r i z o n t a l  l e v e l  i n t o  t he  c e l l s  of  t he  f o l -  

l o w i n g  l e v e l  in  t h e  d i r e c t i o n  of  t he  f low,  e a c h  t i m e  e x -  

p e r i e n c i n g  a r a n d o m  t r a n s v e r s e  d i s p l a c e m e n t  b y  s o m e  
d i s t a n c e  w h i c h  i s  d e t e r m i n e d  b y  t h e  p a c k i n g  s t r u c t u r e  

of  t h e  l a y e r .  E a c h  c e l l  i s  c h a r a c t e r i z e d  b y  s o m e  d i f -  

f e r e n t i a l  d i s t r i b u t i o n  f u n c t i o n  o f  t i m e  s p e n t  in  t he  c e l l  

f ( t ) ,  w h i c h  in w h a t  f o l l o w s  wi l l  b e  c a l l e d  a m i c r o - d i s -  

t r i b u t i o n .  The  f o r m  of  t he  m i c r o d i s t r i b u t i o n ,  w h i c h  

i s  d e t e r m i n e d  b y  t h e  p h y s i c a l  p r o c e s s e s  i n s i d e  t h e  

c e l l ,  w a s  no t  g i v e n  a s p e c i f i c  f o r m  in  [1]. I t  w a s  f o u n d  

t h a t  the  L a p l a c e  f o r m  f o r  t he  p r o b a b i l i t y  of d i s p l a c e -  

m e n t  of  a d d i t i v e  p a r t i c l e s  b y  m c e l l s  in  a d i r e c t i o n  

n o r m a l  to  t he  d i r e c t i o n  of  t he  s t r e a m  h a s  t h e  f o r m  

g-1 _ t t 1 
F~  (p) = pV g__r~_ ~ tg- - -  y b - c : - i -  0 ~ 

oo 

= 1 Ir d,). ( i1 )  
0 

H e r e  g(p) i s  t h e  c h a r a c t e r i s t i c  f u n c t i o n  of t h e m i c r o -  

d i s t r i b u t i o n .  T h e  f u n c t i o n  F m ( t )  in  w h a t  f o l l o w s  i s  

c a l l e d  t h e  m a c r o d i s t r i b u t i o n .  T h e  b a s i c  c h a r a c t e r i s -  
t i c s  of  the  m a c r o d i s t r i b u t i o n  a r e  i t s  d i s p e r s i o n  ~z( t )  

a n d  k u r t o s i s  c o e f f i c i e n t  Ex( t ) ,  w h i c h  c h a r a c t e r i z e s  t h e  

d e p a r t u r e  of t he  d i s t r i b u t i o n  f r o m  a n o r m a l  law.  In [1] 

t h e  f o l l o w i n g  a s y m p t o t i c  f o r m u l a s  f o r  t h e s e  two q u a n -  
t i t i e s  w e r e  found:  

1~2(t)_ t + a2 ( - - t  ) 
al 2ai ~ t ~ l l = ~  , 

E x  ( t )  - ~ (t) 
- ~ - W 6  - 3  = 

( ~s ] .  (1.2) = t ct~ ~ -2~t  ( i_~3a2~ a~ t5 ~2 

H e r e  a a r e  t h e  c o e f f i c i e n t s  i n  t h e  s e r i e s  e x p a n s i o n  

of  t h e  T a y l o r  f u n c t i o n  

oo 

t j~j+l p~ a (p) = r~- t = y~ ~ , - ,  W" (1.3) 
j = 1  

Formulas (1.2) are valid for times t >> q ,  while pl(Re Pl < 0)is the 
zero of the function A(p) nearest to the imaginary axis. It follows from 
the asymptotic formulas that as t --~ ~ a normal distribution is estab- 
lished with dispersion t/s, where s is the average time spent in a cell, 
regardless of the form of the mierodistribution, However, we can say 
nothing about the speed of establishing a normal distribution without 
specifying the form of the function ](t) or A (p). In what follows, a 
series of concrete models is treated, leading to specific forms of micro- 
distribution functions, and at the same time the connection is estab- 
lished between the parameters which appear in the general formulas 
(1.2) and the physical characteristics of the granular layer and the 
stream which flows through it. 

2. I N V E S T I G A T I O N  O F  T H E  M O D E L S  

2 .1  ~ I d e a l  m i x i n g  c e l l s  ( m o d e l  1). T h e  m o d e l  w i t h  

c e l l s  of an  i d e a l  s o l u t i o n  [2] i s  the  s i m p l e s t .  F o r  t h i s  

m o d e l  t he  c h a r a c t e r i s t i c  f u n c t i o n  of  t he  m i c r o d i s t r i -  

b u t i o n  and  t h e  m a c r o d i s t r i b u t i o n  f u n c t i o n  a r e  s p e c i -  
f i e d  b y  the  f o r m u l a s  

g (p) =- (1 + ps)  :1, F,~ (t) = I t ,  (t / s) e-t/s . (2.1) 

H e r e  I m i s  a m o d i f i e d  B e s s e l  f u n c t i o n  of  t h e  f i r s t  

k i n d  of  o r d e r  m .  F o r m u l a s  f o r  t he  m o m e n t s  of  t h e  

m i c r o d i s t r i b u t i o n  and  t h e  k u r t o s i s  c o e f f i c i e n t  m a y  b e  

o b t a i n e d  d i r e c t l y  f r o m  (2.1) a s  w e t l  a s  f r o m  e x p r e s -  

s i o n s  (1 .2) .  In  t h e  c a s e  u n d e r  c o n s i d e r a t i o n  t h e s e  a r e  

n o t  a s y m p t o t i c  b u t  e x a c t  f o r m u l a s ,  s i n c e  t h e  c h a r a c -  

t e r i s t i c  f u n c t i o n  (2.1) i s  n o w h e r e  e q u a l  to  u n i t y  e x c e p t  

a t  t h e  p o i n t  p = 0. We  h a v e  

~ ( t )  = t / s ,  ~ , ( t ) = t / s + 3 t  ~ / s  ~, 

Ex (t) = s / t  . (2.2) 

It is clear from (2.2) that a normal distribution is established for 
times t >> s. We notice that during a time t the front of the stream 
manages to pass through n = t/s cells along the layer. In the case be- 
ing considered a normal distribution in the transverse diffusion process 
is established after n >> 1 cells have been traversed. This is the maxi- 
mum possible speed for approaching a normal law, since for times 
t ~ s and lengths of the order of the cell dimension it is, in general, 
meaningless to talk about a macrodistribution law. 

2 . 2 * .  I d e a l  m i x i n g  c e l l s  w i t h  s t a g n a t i o n  z o n e s  

( m o d e l  2). W e  s h a l l  c o n s i d e r  a c e l l  c o m p o s e d  of  two 

r e g i o n s ,  a f r e e  v o l u m e  a n d  a s t a g n a t i o n  z o n e .  T h e  

f l ow  of g a s  o r  f lu id  p a s s e s  t h r o u g h  t h e  f r e e  v o l u m e  o f  

t h e  c e l l  only .  F o r  R e y n o l d s  n u m b e r s  w h i c h  a r e  n o t  t oo  

s m a l l  (R = u l / v  >~ 50,  w h e r e  u i s  t h e  l i n e a r  v e l o c i t y  of  

t he  s t r e a m ,  I i s  t he  c h a r a c t e r i s t i c  d i m e n s i o n  of  t he  

c e l l  o r  t he  d i a m e t e r  of  a g r a n u l e ,  and  v i s  t h e  k i n e m a t -  
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ic viscosi ty)  the f ree  volume of the cel l  may  be taken 

to be idea l ly  m i x e d .  The concen t ra t ion  of addit ive 
(marker )  e l ,  which is constant  throughout  the en t i r e  
f ree  volume,  and its va r i a t i on  with t ime  is de t e rmined  
by 

dc~ / dt  = c~ / t o - -  I(~. (2.3) 

Here to is  the average  t ime spent in the f ree  vo l -  
ume,  equal to the ra t io  of the f ree  volume to the v o l -  
ume  r a t e  of flow, I is the flow f rom the f ree  volume 
into the s tagnat ion zone through their  border ,  which is 
of a rea  c~ per  unit  f ree  volume.  In the  model cons ide red  
he re  it is a s s u m e d  that the concen t ra t ion  of m a r k e r  in 
the s tagnat ion  zone c2 is independent  of the spat ia l  co-  
o rd ina tes  and is a funct ion of t ime  only. 

The model  of s tagnat ion  zones has been proposed 
p rev ious ly  in connect ion with the t r e a t m e n t  of the 
p roces s  of longi tudinal  diffusion [3]. The equat ions 
and in i t ia l  condit ions for the concen t ra t ions  el ,  and c z 
have the form 

de2 
dc~ c~ __ aq (el - -  c~,), -dY = q (el - -  c~), 
d--V-----  t--T 

l cl (0) = --~, c~ (0) = 0 .  {2.4) 

Here  q is the exchange r a t e  constant  between the 
s tagnat ion zone and the f ree  volume,  r e l a t ive  to the 
volume of the s tagnat ion  zone V2, ~ is  the r a t io  of the 
s tagnat ion  zone volume V 2 to the f ree  volume of the 
cell  V 1. The sys t em of equat ions  (2.4) may be solved to 
find the d i s t r ibu t ion  func t i on f ( t )  for t imes  spent by a 
pa r t i c l e  in a cel l ,  which coincides  with the function 
el(t) except for the n o r m a l i z i n g  factor  V1/t0. Ca lcu la t -  
ing the c h a r a c t e r i s t i c  m i c r o - d i s t r i b u t i o n  function for 
the given model  we de t e rmine  A (p) 

A (P) - ~ p t o ( P  + q)-~ [P + q ( l a ) ]  

A (p) = 0  for  p o = O a n d p ~ =  q ( t - ~  a). (2.5) 

Using (2.5) we have 

al = s = to (t § a), 

6ct s 2a s a3 = y-~-~ ~ -  �9 (2.6) 
a 2 F ~ i + c t  q ' 

Since the quant i t ies  a t ,  ~z, and a3 are  known f rom 
fo rmulas  (1.2) we can find asympto t ic  exp re s s ions  for 
the d i spe r s ion  and ku r to s i s  coeff icient  of the m a c r o -  
d i s t r ibu t ion  for the given g r a n u l a r  l aye r  model,  val id 
for t imes  t >> tl :  

l l ~ ( t ) =  t_s +2 t  _-a) qs ,t >~t~--q(l + ~  , 

/ t __ a I \-~F t f . _ _  6zt t \ 

2 a  t 5 a  ~ t 2 a  ~ (2.7) 
+ (t + a) qs + (l +a)~(qs) ~ (i + a) (qs)~J " 

On examin ing  exp re s s ions  (2.7) we see  that the 
ku r tos i s  coefficient  Ex, which c h a r a c t e r i z e s  the de-  
pa r t u r e  of the d i s t r ibu t ion  f rom the n o r m a l  law b e -  
comes  sma l l  compared  with unity af ter  a t ime t >> t s = 
= m a x i s ,  q_t]. It may eas i ly  be seen that when the 
condit ion Ex(t) << 1 is  fulfi l led it  is only n e c e s s a r y  to 
r e t a i n  the f i r s t  t e rm  in the fo rmula  for ~2(t). In o rde r  

to expla in  the mean ing  of the r e s u l t s  obtained we shal l  
wr i te  down the exact  fo rmula  for the d i s p e r s i o n  of the 
ma c r od i s t r i bu t i on  of the model  in quest ion and exa-  
mine  its va r i a t i on  in t ime  

t a . [ 1  - -  e -~( l+:~) t ]  . (2.8) ~ (t) = -7- ~ (1 + ~) qs 

In the beginning  for t << [q(1 + c~)] -1 the d i spe r s ion  
i n c r e a s e s  with t ime  as t/t0. This  per iod  co r re sponds  
phys ica l ly  to the t ime  when the addit ive has not yet  
managed  to pene t ra te  into the s tagnat ion  zone. The 
i n c r e a s e  in the d i spe r s ion  subsequent ly  slows down; 
for t >> [q(1 + c~)] -1 the exponent in (2.8) van i shes  and 
the .asympto t ic  fo rmula  (2.7) r e su l t s .  The na tu re  of 
fu r the r  va r i a t i ons  of d i spe r s ion  with t ime  depends 
s t rong ly  on the s ize  of the p a r a m e t e r  (~. If c~ ~< 1, then 
p2(t) = t / s  ~ t/t0, i .e . ,  the change in the d i spe r s ion  fo l -  
lows p rac t i ca l ly  the same  law as for t imes  which a re  
sma l l .  The p ic tu re  for ~ >> 1 is quite dif ferent .  In this 
case dur ing  an in t e rva l  of t ime  [q(1 + ~)]-1 << t << q-1 
the d i spe r s ion  r e m a i n s  cons tant  and equal to (qs ) - l ,  
af ter  which for t >> q-1 it begins  to i n c r e a s e  ve ry  
slowly, compared  with the in i t i a l  i n c r e a s e ,  accord ing  
to the law t / s .  The r e s u l t s  given above a re  i l l u s t r a t ed  
graph ica l ly  in a f igure in which the d i spe r s ion  of the 
m a c r o - d i s t r i b u t i o n  is given as a function of t ime.  

For  ~ >> 1 dur ing  a per iod  t s >> t >> t i  c o r r e s p o n d -  
ing to a constant  d i spe r s ion  the addit ive,  on fa l l ing 
into s tagnat ion  zones of v e r y  l a rge  volume,  e x p e r i -  
ences  p rac t i ca l l y  no t r a n s v e r s e  d i sp lacement .  After  
the passage  of a t ime t s a dynamica l  equ i l i b r ium is 
e s t ab l i shed  between the cel ls  and the s tagnat ion  zones 
and they operate  together l ike a s ingle  cell  of ve ry  
l a rge  capacity.  

2.3 ~ . Ideal mix ing  ee l l s  with diffusion s tagnat ion  
z o n e s  (model 3). We shal l  now cons ider  s tagnat ion  
zones in which the t r a n s p o r t  veloci ty of the addit ive 
can no longer  be taken to be inf ini te .  In this case the 
concen t ra t ion  of m a r k e r  within a s tagnat ion  zone will  
depend not only on t ime  but a lso on the spat ia l  coo rd i -  
na tes ,  and will sa t i s fy  the equation of m o l e c u l a r  dif-  
fusion.  We shall  take the s tagnat ion zone to be a flat 
l aye r  of th ickness  5, and let  the x -ax i s  l ie  so that  x = 0 is 
on the boundary  between the s tagnat ion zone and the 
f ree  volume,  and x = 5 is on the "sea led"  boundary .  
Then  the equation for c 2 and its in i t ia l  and boundary  
condit ions a s s u m e  the fo rm 

D o %  o~ D o~ c~(O, t) = c~(O, t) 
oz~ ~ - '  ox ~=~--0 '  c ~ ( x , O ) = 0 .  (2.9) 

On solving Eq. (2.9) together  with (2.3) we find g(p) 
and A (p) co r re spond ing  to the given model  

A ( p )  = pto _}_e~to ]/--D-p th  j / / ~ 6  = pto ( i  ~ tg;~\ ~- ~--~---) 

(~ = ~ ,  X=6 ] / ~ ) .  (2.10) 

Here  e is the ra t io  of the specif ic  vo lumes  of the 
s tagnat ion  zone and the f ree  volume.  The c h a r a c t e r -  

i s t ic  t ime  t 1 which mus t  e lapse  before the asymptot ic  
fo rmulas  (1.2) can be employed is de t e rmined  f rom 
the solut ion of the t r a n s c e n d e n t a l  equat ion 
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1 8 z td 

( l / ~  < z~ < a ) .  (2 .11)  

F o r  A(p) d e t e r m i n e d  f r o m  fo rmu la  (2.10) we have  

2 (2 
a~ = s = to (i + a),  a~ = -~-  ~ sta, 

a n - -  4 (2 std 2 (2.12) 

Formulas (2.12) coincide formally with formulas (2.6), apart from 
numerical coefficients, if we take t d equal to q-i. Consequendy we 
may immediately conclude that t s = max [s, :d], and also that when 
the condition t >> t s is fulfilled the dispersion is equal m t/s. It should 
be stressed that in spite of the fact that formulas (2.6) and (2.12) are 
formally the same, the models which lead to these formulas are fun- 
damentally different. This difference is particularly apparent for a >> 
>> 1. In the latter case, model 3 cannot lead to a fnncdon of rime for 
which there exists a time inmrval wi~ a constant dispersion. 

2.4". Ideal  mix ing  oe l l s  with di f fus ive  s tagnat ion 
zones  having a f in i te  exchange  r a t e  be tween  the f r e e  
vo lume  and the s tagnat ion  zone (model  4). When t h e r e  
is a f ini te  r a t e  of exchange  between the f r ee  vo lume of 
the ce l l  and the s tagnat ion zone the boundary condit ion 
mus t  be changed to 

1 OOC~ -8- = o~ ~- k (c~-- Cl) for  x -~ 0 .  (2.13) 

Here  k is the exchange coeff ic ient .  Al lowing for  
(2.13) we have 

to / - c t h  ~ . \ - I  

d \ V Ptd ] 

(The Blot  n u m b e r  B = kS/D. ) 
It is not diff icult  to see  that  (2.14) contains  fo rmulas  

(2.5) and (2.10) as l imi t ing  c a s e s .  In o r d e r  to obtain 
{2.10) it is n e c e s s a r y  to pass  to the l i m i t  k ~ oo in 

(2.14). F o r m u l a  {2.5) c o r r e s p o n d i n g  to s tagnat ion zones 
of ideal  mix ing  is  obtained f rom the g e n e r a l  f o r m u la  in 
the l imi t  when D ~ ~, while in this ca se  the p a r a m e -  
t e r  q of model  2 turns  out to be equal  to k / 6 .  

The  z e r o s  of the function A(p) a r e  found by solv ing  
the t r anscenden ta l  equat ion 

~ - -  B~ ctg ~ - -  a B  = 0 ,  (2.15) 

which is a gene ra l i za t ion  of Eq. (2.11) of mode l  3. The  
c h a r a c t e r i s t i c  t ime  tl is  connected  with the roo t  Xl of 
Eq. (2.15) having the s m a l l e s t  modulus ,  by the r e l a t i on  
tl  = t d / ~ ,  s i m i l a r  to that which was obtained for mode l  
3. However ,  as d is t inc t  f r o m  the l a t t e r  case ,  Xi now 

depends on the value  of  the p a r a m e t e r  B and in the 
p r e s e n t  ca se  it is imposs ib l e  to draw the conclus ion 
that X1 ~ 1 for  a l l  va lues  of B. 

When Eq. (2.15) is examined  we see  that  the root  

~1 can be sma l l  compared  with unity only when the 

fol lowing condit ions a r e  ful f i l led  s imu l t aneous ly :  

B ~ i ,  aB ~ l .  (2.16) 

If condi t ions (2.16) a r e  ful f i l led  then the t i m e  t t  

(much g r e a t e r  than t d) is d e t e r m i n e d  by the s a m e  e x -  
p r e s s i o n  as was obtained for  model  2. Thus fu l f i lment  

of inequa l i t i e s  (2.16) is an ind ispensable  condit ion 
for  the model  of ideal  mix ing  ce l l s  with s tagnat ion 
zones  t o b e  appl icable .  In the case  in which at l ea s t  one of 
inequa l i t i e s  (2.16) is not fulf iUed,  the roo t  hi wil l  
be of the o r d e r  unity, and the t ime  tl ~ t d. Using f o r -  
mula  (2.14) we have 

(2 ~+ 2 (B § 3) 

6(2 T s d2[  + ( 2 . )  

It is  not diff icul t  to see  that  for  B >> 1 e x p r e s s i o n s  
(2.17) pass  to those of (2.12), and for  B << 1 to t h o s e o f  
(2.6). F r o m  this it fol lows in p a r t i c u l a r  that if the 
mode l  of ideal  mix ing  ce l l s  with s tagnat ion zones is to 
be used  then condit ions (2.16) a r e  not only n e c e s s a r y  
but a l so  suff ic ient .  The condit ion of appl icab i l i ty  for  
mode l  3 is the inequal i ty  B >> 1. If B ~ 1, then we 
mus t  use the gene ra l  f o rmu la s  (2.17). C l e a r l y  B = qt d, 
and so in the gene ra l  ca se  of a r b i t r a r y  va lues  of B the 
t ime  for e s t ab l i sh ing  a no rma l  d i s t r ibu t ion  is d e t e r -  
m ined  by the l a r g e s t  of the quant i t ies  s, t d, q-1. 

3. PHYSICAL INTERPRETATION OF THE RESULTS 

The outline which has been given is exceedingly 

general and can be applied to the analysis of transport 

processes of both matter and heat. In what follows we 

shall consider a series of specific processes. 

3.1 ~ The transport of matter in a layer of nonpor- 

ous particles. Here the regions close to the surface 

of the solid particles are stagnation zones where tur- 

bulent pulsations are damped and the transport of 

matter comes about only by means of molecular diffu- 

sion. A flat diffusive boundary layer at a hard surface 

[4] (of thickness 8, much less than the grain parameter 

l ) constitutes such a stagnation zone. For a diffusion 

layer the quantity cr is the same as the specific sur- 

face of the hard particles and in order of magnitude is 

equal to l -I. The quantity e = i, so that c~ ~ 8/I << I. 
There is no resistance at the boundary of the free vol- 

ume and the stagnation zone; thus k = ~ and B = oo. 

From this it follows immediately that the given process 

is described by model 3. In accordance with the results 

of �82 2.3 ~ , the time for establishing a normal distribu- 

tion is determined by the largest of the quantities s 

and t d. Let us compare these quantities: 

td/s  -~ 8~]Dto ~ R P / N  2 ~ R - ~  i[3 , (3.1) 

where  N = 5 / /  is the Nusse l t  diffusion number  and 

1 ) = v / D  is the P rand t l  diffusion number .  In the e s t i -  
ma te  which has  jus t  been  made the e m p i r i c a l  function 
N(R, 1)) fo r  a g r anu l a r  l aye r  [5] has  been used;  we 
sha l l  use  this function in the fol lowing e s t i m a t e s  a lso.  

It fol lows f rom (3.1) that the r a t io  t d / s  ~ 1 for gas 
f luxes and t d / s  ~ 10 for  l iquid f luxes;  t he re  appears  
to be p r a c t i c a l l y  no dependence on the Reynolds  n u m -  
be r .  C l ea r l y  the r a t i o  t d / s  d e t e r m i n e s  the number  of  
c e l l s  n s which the s t r e a m  front  t r a v e r s e s  before  a 
n o r m a l  d i s t r ibu t ion  is  e s t ab l i shed  in the p r o c e s s  of 

t r a n s v e r s e  diffusion. We note that in gases  a n o r m a l  
d i s t r ibu t ion  is  e s t ab l i shed  as rap id ly  as if  s tagnat ion 
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zones were  not p r e s e n t  (model 1), and in l iquids  
somewhat  m o r e  slowly. 

Another  s tagnat ion zone in a l aye r  of nonporous  
pa r t i c l e s  is the reg ion  c lose  to the point where the 
g ranu le s  make contact  [6]; this reg ion  is  far  f rom b e -  
ing flat. In a l ayer  of spher ica l  g ranu les  its bo rde r  
with the f ree  volume of a cel l  is the side a r e a o f a  cy l -  
inder  of height  5 0, equal to the thieknes  of the v i scous  
s u b l a y e r ,  and of r ad ius  (501)1/2 so tha t  cr ~ 53/2l-5/2. 

The n u m b e r  of s tagnat ion  zones of this type which 
occur  for a s ingle  cel l  is de t e rmined  by the pack-  
ing s t r u c t u r e  of the layer .  Diffusion into the i n t e -  
r i o r  of such a s tagnat ion  zone is  v e r y  difficult ,  and as 
was shown in paper  [6] which dealt  with longi tudinal  
mix ing  in a g r a n u l a r  l aye r ,  the inf luence of these 
zones on the e ros ion  of the m a r k e r  of neu t ra l  addit ive 
is somewhat  s t r o n g e r  than for the s tagnat ion  zones 
c lose  to the sur face  of the pa r t i c l e s .  The c h a r a c t e r i s -  
t ic  function for ce l l s  with s tagnat ion zones close to the 
points  where  the g ra in s  make  contact  was obtained in 
paper  [6] : 

It may  eas i ly  be shown that apar t  f rom n u m e r i c a l  
coeff ic ients ,  r e s u l t s  for this model  may  be obtained 
with the funct ion (2.14) co r r e spond ing  to model  3, if 

we set  

= V 6 7 ,  ~ = ( ~ 0 / 1 )  ~. 

In this case  

n ~ = t d / s ~ l S a / D t o ~ R P ' / ~ / N ~ R ~  (3.3) 

Here  the d i f ference  between a l iquid and a gas ap-  
pea r s  much m o r e  m a r k e d l y  than in (3.1). It follows 
f rom (3.3) that if the s tagnat ion  zones close to the 
points  of contact  do not play a notable  par t  for gases ,  
then for l iquid s t r e a m s  a n o r m a l  d i s t r ibu t ion  is  ap-  
proached much m o r e  s lowly and it i s  es tab l i shed  only 
af ter  the f ront  of the s t r e a m  has t r a v e r s e d  a l a rge  
n u m b e r  of cel ls  n >> n s >> 1. In this case  if the n u m b e r  
of cel ls  along the l ayer  is not ve ry  l a rge  (n .< ns),  a 
n o r m a l  d i s t r ibu t ion  may not be es tab l i shed  at all d u r -  
ing the t ime  that the front  of the s t r e a m  t r a v e r s e s  the 
l aye r .  

3.2 ~ . The t r a n s p o r t  of m a t t e r  in a l ayer  of porous  
pa r t i c l e s .  Here  the porous  g ranu le  i t se l f  is a s t agna -  
t ion zone; the effect of the s tagnat ion  zones t r ea ted  
p rev ious ly  is negl ig ib ly  sma l l  compared  with the zone 
cons ide red  here .  Since diffusion in a porous  g ranu le  
proceeds  compara t i ve ly  slowly, m a t t e r  does not m a n -  
age to pene t ra te  deeply into the granule ,  and the geo-  
m e t r y  of the s tagnat ion zone may be taken to be plane 
as before .  It is  now n e c e s s a r y  to i n t e r p r e t  D as the 
effect ive diffusion coeff ic ient  in a porous pa r t i c l e ,  and 
5 may  be taken to be equal to i ts  hydrau l ic  r ad ius .  The 
exchange coeff icient  k is equal to the coeff ic ient  of 
m a s s  t r a n s f e r  to the ex te rna l  su r face  of the g ranu le .  
S t ra ight forward  e s t ima te s  show [7] that in this  case 
B >> 1, so that the sys t em under  cons ide ra t ion  may be 
de sc r i bed  by model  3. The r a t io  of the speci f ic  vo l -  

umes  of the s tagnat ion  zone and the f ree  volume of a 
porous  pa r t i c l e  is  on the o r d e r  of uni ty;  on d e t e r m i n i n g  
the p a r a m e t e r  c~ it follows that for the given p roces s  

~ 1. An e s t ima te  of the n u m b e r  n s shows that 

ns = td /s = 52/Ds ~ ul /D ~ R P .  (3.4) 

It is c l ea r  f rom (3.4) that the effect of the s t agna -  
t ion zones is cons ide rab le  even for gaseous  fluxes.  

3.3% Heat t r a n s f e r  in a g r a n u l a r  l aye r .  In heat 
t r a n s f e r  sol id pa r t i c l e s  also behave as s tagnat ion  
zones .  As in the prev ious  model  5 mus t  be taken 
to be the hydraul ic  r ad ius  of a g ranu le ;  D is the 
coeff ic ient  of t he rma l  diffusivi ty of a solid pa r t i c l e .  
In the p r e se n t  case  the coeff ic ient  e is  equal to 
the ra t io  of the heat capac i t ies  per  unit  volume of 
the ha rd  sphere  and the flux 7p/Ts- F o r  gaseous fluxes 
e >> 1 and consequent ly  (y >> 1; in l iquids  n o r m a l l y  
e ~ 1 and ~ ~ 1. The exchange coefficient  is  equal  to 
k = kt/T ~, where k t is the coefficient  of heat  t r a n s f e r  
to the ohter  su r face  of the g ranu le .  In this case the 
p a r a m e t e r  B is equal to 

B = k ~ 5 / x p ~ N x ~ / x p ~ R ~ 1 7 6  . (3.5) 

Here  N is the t he rma l  Nusse l t  n u m b e r ,  P is  the 
t h e r m a l  P rand t l  n u m b e r ,  and Xp and Xs a re  the t he rma l  
eonduct iv i t ies  of the sol id  pa r t i c l e s  and the s t r e a m ,  
r e spec t ive ly .  It follows f rom (3.5) that B may a s s u m e  
ve ry  va r i ed  va lues  ; however ,  sma l l  va lues  of B are  
m o r e  c h a r a c t e r i s t i c  for gaseous  fluxes,  and l a rge  
va lues  of B for l iquid f luxes.  Depending on the m a g n i -  
tude of the p a r a m e t e r  B the sys t em is de sc r ibed  by 
one of the three  models  (2-4) .  

It should be noted that even though the t he rma l  con-  
duct ivi ty  of the ha rd  pa r t i c l e s  is compara t ive ly  l a rge  
these act  as before  like s tagnat ion  zones.  This  comes  
about as the r e s u l t  of the fact that the hea t  conduction 
in the sol id phase through the points of contact  be-  
tween the pa r t i c l e s  is  v e r y  much inhibi ted [8]. Heat 
conduction f rom cell  to cel l  through a solid pa r t i c l e  
also does not play a s igni f icant  ro le ,  s ince 

ek/u ~ K / R P  ~ R - ~  l .  (3.6) 

In accordance  with the genera l  r e s u l t s  obtained for 
model  4, the t ime for  e s t ab l i sh ing  a n o r m a l  d i s t r i b u -  
t ion is de t e rmined  by the l a r g e s t  of the quant i t ies  s, 
td ' q_l. Cor respond ing ly  n s is de t e rmined  by the 
l a r ge s t  of the quant i t ies  

l td RP t R~ ~'~ Xp td 
' s t - ~ a  ' q s  t t=c t  Xs Bs " 

In gas f luxes for modera te  Reynolds n u m b e r s  (R 
~ 102 - 103) {td/s <, 1), a n d n  s may be cons ide rab ly  in 
excess  of uni ty  only if B is  sma l l  enough, i .e . ,  in a 
l aye r  of pa r t i c l e s  having a high the rma l  conductivi ty.  
In this case  the curve  for the d i spe r s ion  of the m a c r o -  
d i s t r ibu t ion  as a function of t ime  may  have a hor izon ta l  
pa r t  (see f igure) .  In l iquids ,  t d / s  >> 1, and so n s >> 1 
always.  It has a l ready  been noted that for l iquids ,  
sma l l  va lues  of the Blot  n u m b e r  a re  not c h a r a c t e r i s t i c ,  
so that the quanti ty t d / s  is usua l ly  much l a r g e r  than 

all  the o thers ,  and n s = td / s .  
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3.4 ~ T r a n s f e r  of m a t t e r  in a l a y e r  of nonporous  
p a r t i c l e s  which adsorb  the addit ive.  At a c e r t a i n  s tage  
a su r face  of g ranu les  which adsorb  the addi t ive  is a 

/ZZ I / z < /  

/ 
~>>/  . . . . . .  

I 
t 

"stagnat ion zone . "  If the r e l a t i on  be tween the concen -  
t r a t ion  of m a t t e r  at the su r f ace  and the s u r f a c e  con-  
cen t ra t ion  of adsorbed  m a t e r i a l  is de t e rmined  by 
H e n r y ' s  law with a constant  a (having the d imens ions  
of length), then the p r o c e s s  under cons ide ra t ion  is  
d e s c r i b e d  by model  2, and we m u s t  set  q = k / a ,  c~ = ~a 

in the co r r e spond ing  fo rmu la s .  
H e r e  k mus t  be taken to be  the coef f ic ien t  of m a s s  

t r a n s f e r  to the ex te rna l  su r f ace  of the g ranu le .  In a c -  

co rdance  with the r e s u l t s  of sec t ion  2.2 ~ , the t i m e  
for  es tab l i sh ing  a no rma l  d is t r ibut ion  is d e t e r m i n e d  
by the l a r g e r  of the quant i t ies  s and a / k .  The number  
of ce l l s  n s in this case  is equal to 

a u a a R o . , l p : ' ~  (3.7) ~ ~ -ffs-s k a -~ l a ~, l " 

It fol lows f r o m  fo rmu la  {3.7) that the max imum  
poss ib le  value  of n s = u /k  is obtained for  a >> 1. How- 

e v e r ,  we mus t  not fo rge t  that t oge the r  with the a d s o r p -  
tion m e c h a n i s m  of the t rapping of m a t e r i a l  within a 
ce l l ,  m a t e r i a l  is a lso  t rapped within a diffusion l aye r  

(see ~3.1~ which leads  to a value n s ~ uS/k l .  C o m -  
par ing  this quantity with (3.7), we see  that the a d s o r p -  
tion t rapping m e c h a n i s m  is m o r e  e f fec t ive  than the 

diffusion m e c h a n i s m  for  a > 5. In the case  of f a i r l y  
s t rong  adsorp t ion  (a >> l) the m a e r o d i s t r i b u t i o n  d i s -  
pe r s i on  function will  have a plateau (see f igure)  for  
t imes  l / k  << t << a / k .  
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